A New Iridoid Glycoside and a New Iridoid from *Pedicularis* kansuensis f. albiflora

Cheng Shan YUAN, Wei Dong XIE, Xiu Ping YANG, Zhong Jian JIA*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A new iridoid glycoside **1** and a new iridoid **2** were isolated from the whole plant of *Pedicularis kansuensis* f. *albiflora*. Their structures were elucidated by spectroscopic methods.

Keywords: Pedicularis kansuensis f. albiflora, Scrophulariaceae, iridoid glycoside, iridoid.

Pedicularis kansuensis f. *albiflora* has been used for treatment of collapse, exhaustion and senility¹. Here we report the structure elucidation of a new iridoid glycoside $\mathbf{1}$ and a new iridoid $\mathbf{2}$ isolated from this plant.

Compound **1**, white amorphous powder, $[\alpha]_D^{24} - 10$ (*c* 1.44, CH₃OH), UV λ_{max}^{MeOH} 249 (0.65) nm, the IR spectrum (KBr) showed absorptions for hydroxyl (3464, 3200 cm⁻¹), double bond (1637 cm⁻¹) and C-O-C (1077, 1007 cm⁻¹), FABMS showed quasimolecular ion peaks at m/z 351 [M+Li]⁺ and m/z 367 [M+Na]⁺, suggesting the molecular formula to be C₁₆H₂₄O₈, which was supported by ¹³C NMR and DEPT spectra. The NMR spectra supported **1** was an iridoid glycoside. ¹H NMR spectra of compound **1** (**Table 1**) showed the presence of two methines at δ 5.07 (d, 10Hz, H-1), 6.52 (s, H-3) and a methylene connected with oxygen at 4.02 (brs, H-11), ¹H and ¹³C NMR showed that except double bond between C-3 and C-4, there was another double bond between C-5 and C-6, the carbons of the double bond were a methine and quaternary carbon. The anomeric proton of glucose at 4.57(d, 7.8Hz, H-1') suggested the glucose was in β -orientation. The D-glucose was confirmed by PC after acid hydrolysis of **1**. C-10 (δ 14.8) in **1** was in α -orientation². The relative stereochemistry of **1** was further determined by the NOESY

^{*} E-mail: jiazj@lzu.edu.cn

experiment. The correlations of δ 2.42 (H-8) with δ 2.58 (H-9), δ 0.84 (H-10) with δ 5.07 (H-1), and no correlation between δ 5.07 (H-1) and δ 2.58 (H-9), δ 0.84 (H-10) and δ 2.58 (H-9), suggested that the H-8 and H-9 were in β -orientation, and the H-1 was in α -orientation. Hence, the structure of the iridiod glycoside was assigned to be **1**.

Compound **2**, $[\alpha]_{D}^{23} - 62$ (*c*, 0.23, CH₃OH) colorless needle. Its EIMS exhibited a molecular ion peak at m/z 254. The molecular formula was deduced as C₁₄H₂₂O₄ by its MS, ¹³C-NMR and DEPT spectra. The ¹³C-NMR spectra of compound **2** (**Table 1**) was similar with those of the known compound ixoroside³ except for the presence of an *n*-butyl group instead of the β -D-glucopyranosyl at C-1 in ixoroside. The ¹³C NMR data δ 51.3 (C-9) suggested the -OH at C-8 was in β -orientation⁴, the NOESY experiment showed that δ 4.95 (H-1) correlated with 3.55 (H-5) and 1.34 (H-10), and 3.20 (H-9) did not correlate with them. This result suggested that the H-1, H-5, and the -CH₃ at C-8 were α and the H-9 was β -orientated. Thus, the structure of compound **2** was confirmed.

No.	1 H(α / β)		¹³ C (DEPT)	
	1	2	1	2
1	5.07 (brd, 10.0)	4.95 (d, 4.4)	97.8 (CH)	100.2 (CH)
3	6.50 (s)	7.15 (s)	141.8 (CH)	160.7 (CH)
4	-	-	114.4 (C)	124.1 (C)
5	-	3.55 (m)	133.4 (C)	29.7 (CH)
6	5.53 (brs)	2.34 (m)/1.72 (m)	118.6 (CH)	28.8 (CH ₂)
7	1.92 (m)/2.48 (m)	2.21 (m)/1.58 (m)	40.6 (CH ₂)	40.5 (CH ₂)
8	2.42 (m)	-	32.8 (CH)	79.9 (C)
9	2.58 (dd, 10.0, 6.5)	3.20 (m)	48.6 (CH)	51.3 (CH)
10	0.84 (d, 6.8)	1.34 (s)	14.8 (CH ₃)	24.8 (CH ₃)
11	4.02 (brs)	9.25 (s)	58.3 (CH ₂)	190.4 (CH)
1'	4.57 (d, 7.8)	3.87 (m)	98.8 (CH)	69.3 (CH ₂)
2'	2.90-3.37	1.45 (m)	73.2 (CH)	31.5 (CH ₂)
3'	2.90-3.37	1.38 (m)	76.7 (CH)	19.2 (CH ₂)
4'	2.90-3.37	0.93 (t, 7.2)	70.1 (CH)	13.8 (CH ₃)
5'	2.90-3.37	-	77.2 (CH)	-
6'	3.65 (d, 11.2)	-	61.3 (CH ₂)	-

Table 1 ¹H-NMR (400 MHz), ¹³C-NMR (100 MHz) and DEPT data of 1 and $2(\delta_{ppm}, J_{Hz})$

DMSO-d6 as solvent for 1 and CDCl₃ as solvent for 2.

Acknowledgments

This work was supported by the NNSFC (No. 29972017).

References

- 1. Jiangsu New Medical College, *Chinese Medicine Dictionary*, Shanghai People's Publishing House, Shanghai, **1977**, p. 286.
- 2. S. Damtoft, et al., Phytochem., 1981, 20, 2717.
- 3. G. G. Zapesochnaya, et al., Khim. Prir. Soedin, 1991 (6), 777.
- 4. R. K. Chaudhuri, et al., Helv. Chim. Acta., 1979, 62, 1603.

Received 27 September, 2002